作为自互联网诞生以来的第二次技术形态的体现,随着智能产品的落地应用,不同场景的算法持续涌现,计算数据呈爆炸式增长。不少厂商为了追求产品多样化,不断推出新功能,在产品中提到的“人机交互”、“智能识别”等新鲜的概念词汇,以此吸引消费者的购买欲望。
与此同时,AI芯片作为人工智能技术的硬件基础和产业落地的载体,吸引了众多巨头和创企入局,各类AI芯片相继面世。
在近日胡润研究院发布的《2020胡润中国芯片设计10强民营企业》榜单中,按照企业市值或估值列出了中国10强本土芯片设计民营企业,分别为:韦尔股份、汇顶科技、兆易创新、卓盛微电子、君正集成电路、圣邦微电子、比特大陆、瑞芯微、晶晨半导体、地平线家芯片设计企业中比特大陆、地平线家都是AI芯片公司,占据了将近1/3的比重,足以见得AI芯片发展的重要性。
虽然指令级架构凭借其通用性和广泛的应用,成为了AI芯片的主流架构,但是在AI芯片进行算法处理的过程中,涉及到大量的计算、并行处理、低时延等要求,给芯片存储器带来了巨大的挑战,这也就是冯·诺依曼计算方式下共享内存模式导致的存储性能瓶颈问题,我们又称其为“数据墙”、“内存墙”或者“冯·诺伊曼瓶颈”。
相信很多人对“数据流AI芯片”了解甚少。在近日鲲云科技举办的新品发布会上,据鲲云科技创始人和CEO牛昕宇博士介绍,与传统指令集架构相比,数据流架构没有概念上的指令计数器,它是依托数据流流动次序控制计算次序,采用计算流和数据流重叠运行方式消除空闲计算单元,并采用动态配置方式保证对于人工智能算法的通用支持,突破指令集技术对于芯片算力的限制。
数字信号处理、网络路由、图形处理、遥感检测、以及数据库处理,以及当今许多软件体系结构中占据着重要地位。
当然,数据流架构AI芯片的研发难度远远大于指令集架构,目前全球基于数据流方式研究AI芯片的企业少之又少,主要有鲲云科技、Wave Computing、Sambanova、Groq,而目前能够实现数据流AI芯片量产的仅有国内的鲲云科技一家。总体而言,数据流架构也不失为未来AI芯片的一条重要发展路径。